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Abstract The anisotropic thermal conductivity of helium–xenon binary nanocrys-
tal superlattices (BNSLs), which are stoichiometric solid structures Xe(He)2 and
Xe(He)13, at high pressure and room temperature (T = 300 K), respectively, has
been calculated by equilibrium molecular dynamics (EMD) simulation using the
Green–Kubo formalism and the exponential-6 intermolecular potential under periodic
boundary conditions (PBC). The pressures obtained from EMD agree very well with
those from an independent study, to within 5 %. Nonequilibrium molecular dynamics
(NEMD) simulation is also carried out for comparison. The thermal conductivities pre-
dicted by NEMD are of the same order of magnitude as the results predicted by EMD.
The anisotropic thermal conductivities of stoichiometric solid structures (Xe(He)2
and Xe(He)13) with different molar volume and atomic number are investigated, and
results show that the thermal conductivities of Xe(He)2 are more strongly anisotropic
than those of Xe(He)13, whereas the averaged thermal conductivities of Xe(He)2 are
around one tenth (1/10) of those of Xe(He)13, indicating that the thermal conductiv-
ities of helium–xenon BNSLs (Xe(He)2 and Xe(He)13) significantly depend on the
molecular structure in both magnitude and anisotropy. The results also show that both
the magnitude and anisotropy of the thermal conductivity of helium–xenon BNSLs
(Xe(He)2 and Xe(He)13) slightly depend on the atomic number and molar volume of
the simulation system, with finite-size effects existing in the nanoscale system.
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1 Introduction

Studies have shown that mixtures of some microspheres (natural and synthetic) with
selected size ratios can co-crystallize into binary AB, AB2, AB5, or AB13 nanocrys-
tal superlattices [1–6]. These binary nanocrystal superlattices (BNSLs) have attracted
considerable attention, as they can produce structures that are more complex than the
standard hexagonal close-packed (HCP) and face-centered cubic (FCC) arrangements
most frequently observed for single-component systems, moreover, as binary superlat-
tices have the potential to create new “metamaterials” which display unique collective
properties that differ from their individual components [6]. In addition, the thermal
conductivity is a crucial thermodynamic parameter of the material, but “One of the
most difficult transport coefficients to calculate has proven to be thermal conductiv-
ity [7].” So it is essential to investigate and understand the thermal conductivity of
BNSLs.

The primary objective of this article is the study of the effect of various factors on the
anisotropic thermal conductivity of BNSLs, e.g., the molecular structure, atomic num-
ber, and molar volume. Since the intermolecular potential of helium–xenon BNSLs
(Xe(He)2 and Xe(He)13) can be obtained from Ref. [8], they have been studied as rep-
resentations of BNSLs using molecular dynamics (MD) simulation. Previous research
has known that MD is a viable method for providing insight into the nanoscale world,
especially where thermal transport is concerned. Depending on the size and state of the
system, as well as how well the underlying physics are understood, MD can provide
the necessary properties of materials, such as thermal conductivity.

The thermal conductivity can be computed using equilibrium molecular dynam-
ics (EMD) with Green–Kubo (EMD-GK) or nonequilibrium molecular dynamics
(NEMD) simulation, which are two common MD approaches. One of the advantages
of EMD-GK simulation over the NEMD simulation is the ability to compute the entire
thermal-conductivity tensor in a single simulation enabling observers to capture the
anisotropy of the system [9]. So this article employs EMD-GK simulation to study the
anisotropic thermal conductivity of helium–xenon BNSLs (Xe(He)2 and Xe(He)13).
Further information about EMD-GK and NEMD simulation is described in detail in
Refs. [9–11].

2 EMD-GK Method and Simulation Conditions

In this article, EMD employs the Green–Kubo method to calculate the thermal conduc-
tivity of the stoichiometric solid structures, Xe(He)2 and Xe(He)13, at high pressure
and room temperature (T = 300 K). The EMD simulation is carried out with the con-
ventional constant number of molecules–volume–temperature (NVT) ensemble. The
equations of motion are solved using the velocity Verlet algorithm with a time step �t
under periodic boundary conditions (PBC). The use of PBC is a very practical way to
eliminate surface effects from the system. Therefore, a small sample size (micro- or
nano-scale) means that, unless surface effects are of particular interest, PBC need to
be used [11–13].
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Table 1 Simulation parameters
Variables Parameters

Xe–Xe εXe 3.12 × 10−21 J
σXe 4.43 × 10−10 m
mXe 2.18 × 10−25 kg
αXe 14.55

He–He εHe 1.35 × 10−22 J
σHe 3.08 × 10−10 m
mHe 6.65 × 10−27 kg
αHe 12.55

Xe–He εXeHe
√

εXeεHe

σXeHe
1
2 (σXe + σHe)

αXeHe
√

αXeαHe

The intermolecular potentials of He–He, Xe–Xe, and He–Xe at high pressure (up
to 30 GPa) are represented by the exponential-6 intermolecular potential [8];

φ (r) = ε

(α − 6)

{
6 exp

[
α

(
1 − r

σ

)]
− α

(σ

r

)6
}

(1)

where r is the distance between two atoms, ε is the well depth, σ is the separation
at the minimum of the well, and α is a parameter that governs the stiffness of the
repulsive wall. The values of the parameters for He–He and Xe–Xe in the solid phase
are determined using experimental data [8]. The parameters for the He–Xe potential
are obtained using Lorentz–Berthelot rules. Table 1 gives the selected parameters. In
this article, the potential cut-off radius is 2.5σ .

The EMD-GK simulation employs the fluctuation–dissipation theorem to compute
the superlattice thermal conductivity. EMD simulation relies on relating the equilib-
rium current–current autocorrelation function to the thermal conductivity via the static
Green–Kubo expression,

λµν = 1

V kBT 2

∫ ∞

0

〈
Jµ (0) · Jν (t)

〉
dt (2)

where V is the volume, kB is the Boltzmann constant, T is the temperature, Jµ is the µ

component of the heat current J
⇀

(t), λµν is an element of the thermal conductivity ten-
sor, and the angular brackets 〈 〉 denote a temporal average. The term inside the angle
brackets

〈
Jµ(0) · Jν(t)

〉
represents the heat current autocorrelation function (HCACF).

The temporal decay of the average HCACF represents the time scale of thermal trans-
port. The thermal conductivity along the three Cartesian directions (ζ = x, y, z) can
be computed by setting µ = ν = ζ . The ζ component of thermal conductivity λζ is
expressed by

λζ = 1

V kBT 2

∫ ∞

0

〈
Jζ (0) · Jζ (t)

〉
dt (3)
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The heat current J
⇀

(t) is given by

J
⇀

(t) =
∑

i

u⇀i Ei + 1

2

∑
i, j,i �= j

r⇀i j

(
f
⇀

i j · u⇀i

)
(4)

where u⇀i is the velocity of particle i, r⇀i j is the relative position vector of atom i and
j, f

⇀

i j is the force on atom i due to its neighbor j from the pair potential, and Ei is
the “local” energy and is given by

Ei = 1

2
mi u

⇀2
i + 1

2

∑
j

φ
(
r⇀i j

)
(5)

where mi is the mass of atom i . In this article, the instantaneous temperature can be
obtained from the classical Boltzmann statistical method:

1

2

N∑
i=1

mi u
⇀2

i = 3

2
NakBT (6)

where Na is the number of atoms.
In fact, the ζ component (ζ = x, y, z) of thermal conductivity λζ is calculated by

discretizing the right-hand side of Eq. 3 in EMD time steps �t as

λζ = �t

V kBT 2

M∑
m=1

1

N − m

N−m∑
n=1

Jζ (m + n)Jζ (n) (7)

where N is the number of EMD steps after equilibration, M is the number of steps
over which the time average is calculated, and Jζ (m + n) is the heat current at EMD
time step m +n. In an EMD simulation, calculations are performed with 106 MD steps
(namely, N f = 106) of length �t = 2 fs until the data runs are about 2.0 ns. Another
two levels of time steps are exercised: N = 0.9N f , M = 0.01N f . The lattice constant
is dependent on the density and the number of atoms in the system.

3 Molecular Structure of the Superlattices

3.1 Molecular Structure of Xe(He)2 Superlattices of Nanocrystal

For the stoichiometric solid structure Xe(He)2, it is assumed that Xe(He)2 has the same
AB2 structure as for Murray and Sanders [2,8,14]: the Xe atoms form close-packed
hexagonal layers and are in position (0,0,0) of the hexagonal unit cell, whereas the
He atoms are in positions (2/3, l/3, l/3) and (l/3, 2/3, l/3) of the hexagonal unit cell
and form planar hexagonal layers that alternate with the Xe layers, two Xe atoms
sitting above and below the centers of the He rings, respectively. As the characteristic
parameter of the hexagonal unit cell, the ratio of c/a is close to 1.04 (c is the height
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of the hexagonal cell; a is the length of the hexagonal side). The Xe(He)2 hexagonal
unit cell and superlattices have been shown in Fig. 1a–c.

3.2 Molecular Structure of Xe(He)13 Superlattices of Nanocrystal

For the stoichiometric solid structure Xe(He)13, it is assumed that Xe(He)13 has the
same AB13 structure as observed by Murray and Sanders [2,8,14]: the Xe atoms sit
on the corners of the cubic unit cell in position (0,0,0), whereas one He atom sits at the
center of the cube at position (l/2, 1/2, 1/2) and the other 12 He atoms are in positions
(1/2 + a, 1/2 + b, 1/2 + c) where one of the three parameters (a, b, c) is equal to
zero, the remaining two having equal moduli, but not necessarily the same sign. These
positions are the corners of a cuboctahedron, which has six square sides parallel to
the sides of the cubic unit cell, and eight triangular sides perpendicular to the body
diagonals of the cubic unit cell. As the characteristic parameter of the above unit cell,
the ratio 2r/d is close to 0.59 (r is the cuboctahedron radius; d is the side of the cubic
unit cell). The Xe(He)13 cubic-cuboctahedral unit cell and superlattices are shown in
Fig. 2a, b.

4 Results and Discussion

4.1 Validation of the EMD Code

In order to validate the EMD code in this study, the following measures are taken:
(1) the pressures are calculated by EMD simulation and are compared with those from
Ref. [8]; and (2) the thermal conductivities are obtained from NEMD and EMD and
are compared with each other. Sections 4.1.1 and 4.1.2 briefly describe the methods
for calculating pressures and thermal conductivities using EMD or NEMD.

4.1.1 Calculation of Pressure in EMD Simulation

In the EMD simulation, the complete expression for the pressure is given by [15]

P = NakBT

V
+ 1

3V

∑
i, j,i �= j

(
f
⇀

i j · r⇀i j

)
(8)

where P is the pressure.

4.1.2 Calculation of Thermal Conductivity in NEMD Simulation

NEMD simulation will rely on the so-called direct method, i.e., calculate the thermal
conductivity from the temperature gradient and heat flux. The ζcomponent
(ζ = x, y, z) of thermal conductivity λζ is calculated based on Fourier’s law:
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Fig. 1 (a) Hexagonal Xe(He)2
unit cell; (b) Xe(He)2
superlattices; and (c) observed
plane from top
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Fig. 2 (a) Cuboctahedral Xe(He)13 unit cell and (b) Xe(He)13 superlattices
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Fig. 3 Schematic region of
adding or removing kinetic
energy under PBC

L

hot region cold region

,L LT ε∆,H HT ε∆

λζ = − J ′
ζ

∂T /∂ζ
(9)

J ′
ζ is the heat flux per unit area and is parallel to the gradient of the temperature T .
In this NEMD simulation, the constant temperature gradient method is employed to

calculate the thermal conductivity. Using a well-equilibrated sample, the two regions
are coupled with Berendsen thermostats locally, and each region is set to remain at a
constant temperature. Elsewhere, the dynamics were pure Newtonian. This is sche-
matically shown in Fig. 3. PBC were used in all the directions. The system reaches a
stationary state due to its thermal conductivity. The energy creation rate �εH and the
energy removal rate �εL can be calculated. In each time step, the energy change rate
�εη is given by [16]

�εη =
Nη∑
i

[
1

2
mi u

⇀2
i,old

(
Tt

Tc
− 1

)]
, (η = H, L) (10)

where the sum extends over the NH atoms i in the hot region and NL atoms i in the cold
region. u⇀i,old is the velocity before rescaling. Tt and Tc are the target and current temper-
atures, respectively. Thus, the heat flux per unit area energy J ′

ζ is J ′
ζ = �εγ /(2A�t),

where A is the interface area of the sample perpendicular to the heat flux, �t is the
time step, and γ = H or L. The factor two is to account for splitting this energy into
two fluxes because of the periodic boundary.

The thermal conductivity λζ is obtained from the above calculations as

λζ = − 〈�ε/�t〉
2A 〈∂T /∂ζ 〉 = 〈|�ε/�t |〉

2A 〈|(TH − TL)/L|〉 (11)

where L is the distance between the hot region and cold region and the angular brackets
〈 〉 denote a temporal average.

Initially, the system maintains the temperature T = 300 K and relaxes for 106 MD
steps of length �t = 2 fs, which puts the system in an equilibrium state. And then the
temperature in the thermostated regions are set to TH = 310 K and TL = 290 K, and
each region is set to remain at a constant temperature. The coupling time of the local
Berendsen thermostat in each region is 0.1 ps to keep the average temperature within
0.3 K of the target temperature.
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Fig. 4 Comparison of the pressure and thermal conductivity of a Xe(He)2 compound

4.1.3 Comparison of Simulation Results

The Xe(He)2 compound with a 3×6×3 unit cell (atomic number is 486) is selected as
the simulation system. The simulation system volume depends on its molar volume at
constant atomic number. The pressure of the simulation system is calculated using an
EMD simulation and is compared with that from Ref. [8] in Fig. 4. The y components
of thermal conductivities λy are obtained from NEMD and EMD and are also shown
in Fig. 4. Figure 4 shows that the EMD simulation in this study confirms the great
reliability in predicting thermodynamic properties such as pressure and conductivity.
The pressures obtained agree very well with those from the reference, to within 5 %.
The thermal conductivities calculated by EMD are on the same order of magnitude as
the results calculated by NEMD.

Figure 4 also shows that thermal conductivities predicted by both EMD and NEMD
are dependent on the system’s molar volume and show oscillations. This oscillation
behavior mainly results from the finite-size effects because “Both methods (EMD-GK
and NEMD) exhibit finite-size effects [12].” The finite-size effects permit the ther-
mal conductivity in the small size systems to depend on the system size. This size
dependence of thermal conductivity usually results in oscillations with the variation
of system size; the size dependence is also called the “period length dependence”
in a periodic structure such as a superlattice. It should be noted that the oscillation
behavior of thermal conductivities might partly arise from the round-off errors in MD
simulation. As an alternative result of the finite-size effects, the thermal conductivities
obtained from NEMD are smaller than those from EMD-GK (as shown in Fig. 4),
because the finite size in the NEMD simulation may permit the boundary conditions
to affect the phonon distribution, leading to false temperature gradients in the vicinity
of the interfaces. In other words, phonon scattering at the hot and cold bath bound-
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aries may lead to a shorter phonon mean free path and smaller thermal conductivity.
Finite-size effects and the role of phonon scattering in thermal conductivity will be
briefly discussed in the following section.

4.2 Discussion

To investigate the effect factor on the anisotropic thermal conductivities of the helium–
xenon BNSLs, EMD simulation is used to predict the anisotropic thermal conductiv-
ities of helium–xenon BNSLs which have different molar volumes, different number
of atoms, and different molecular structures (e.g., the stoichiometric solid structures
Xe(He)2 and Xe(He)13), all at room temperature (T = 300 K). Table 2 reports all
the calculated results including the thermal conductivities of three directions and their
averaged values.

4.2.1 Effect of Molecular Structure

From Table 2, both the magnitude and anisotropy of thermal conductivity are signif-
icantly dependent on the molecular structure. For example, Table 2 shows that the
average thermal conductivities of the stoichiometric solid structure Xe(He)13 (sam-
ples 10–18) around are more than ten times those of the stoichiometric solid structure
Xe(He)2 (samples 1–9), e.g., the ratio of λavr of sample 18 to λavr of sample 9 =
2.9101/0.2358 = 12.34. Table 2 also shows that the thermal conductivities of Xe(He)2
are more strongly anisotropic than those of Xe(He)13, as the anisotropic factors of the
thermal conductivities of Xe(He)2 (expect for sample 6) all are more than 2.0, whereas
those of Xe(He)13 (expect for sample 17) all are less than 2.0. According to the def-
inition of the anisotropic factor (see Table 2), the anisotropic factor is equal to 1.0
when the thermal conductivity is isotropic. The above phenomenon is caused by the
helium–xenon BNSLs with different compound concentrations and the symmetries of
a unit cell. MD simulation is a convenient tool for modeling and prediction since it
allows determination of the temperature, lattice parameter, and precise specification
of compound (or impurity) concentration.

In order to understand the thermal-conductivity trends (the thermal conductivities of
Xe(He)13 are larger then those of Xe(He)2 in magnitude while they are less anisotropic
than those of Xe(He)2), one must consider the effects of molecular structure, with con-
sideration to the molecular composition and topology (e.g., the mass and arrangement
of atoms in a molecule). Since the BNSLs studied here are all nonmetallic and there
are no free electrons to carry the heat, the heat transport depends predominantly on the
phonons (lattice vibrations). The phonon relaxation time approach, describing the pho-
non scattering process, is usually utilized to understand the heat transport mechanism.
The phonon relaxation time is determined from the temporal decay of the autocorrela-
tion function (ACF) of the phonons’ energy components [17,18]. According to Eq. 3,
at a constant volume and temperature, the lattice thermal conductivity increases as the
phonon relaxation time (the mean free time in phonon scattering) increases. The above
relationship that the thermal conductivity is proportional to the phonon mean free path
(or the phonon relaxation time) also can be deduced from the phonon kinetic theory
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or a Boltzmann phonon transport equation (BPTE) incorporating the different phonon
models (e.g., Debye model) [19], where the phonon mean free path is proportional to
the phonon relaxation time. However, exact or even numerical predictions of the ther-
mal conductivity from BPTE is a formidable task due to the complexity of the BPTE,
while it is also impossible to expect a quantitatively accurate thermal conductivity
from the phonon kinetic theory based on some over-simplified assumptions.

The Callaway model, which includes phonon-surface diffusive scattering τ−1
s , pho-

non–electron scattering τ−1
e , phonon–phonon (normal and umklapp) scattering τ−1

p ,

and phonon–defect scattering τ−1
d , is employed to express the total relaxation time of

phonon τ according to Matthiessens’ rule: τ−1 = ∑
i

τ−1
i = τ−1

s + τ−1
e + τ−1

p + τ−1
d ,

where τ is the relaxation time, τ−1 is the scattering rate (reciprocal relaxation time),
and τ−1

i represents the individual phonon scattering processes. Thus, τ−1
s is not con-

sidered due to the PBC used in this study (EMD-GK), and τ−1
e also is not considered, as

no free electrons exist in the BNSLs studied here. Phonon–phonon scattering includes
two kinds of scattering: normal scattering τ−1

p,n and umklapp scattering τ−1
p,u where pho-

non–phonon scattering τ−1
p = τ−1

p,n + τ−1
p,u = (B1 + B2)ω

2T 3, which can be treated
as a constant for a given sample with a constant temperature. Defect scattering arises
from imperfections in the crystal and scatters phonons by local alternation of strain
and mass density. The point defect scattering rate τ−1

d is taken from the mass effects
plus strain effects [20]:

τ−1
d = τ−1

ma + τ−1
st , τ−1

ma = Cma

∑
k

fk

(
1 − mk

mav

)2

,

τ−1
st = Cst

∑
k

fk

(
1 − Rk

R

)2

, (12)

where Cma and Cst are the mass and distance independence of the expressions, Rk

and R indicate the radii of the impurity and host atoms, respectively, fk is the atomic
fraction of a component k, mk is the atomic mass of species k, and mav is the average
mass of all the atoms, including impurities. To sum up the above analysis, at constant
temperature, in order to qualitatively compare the phonon relaxation time of sam-
ples with different impurities, only defect scattering, which is related to molecular
structure (e.g., the mass and arrangement of atoms in a molecule), needs to be com-
pared. Some detailed descriptions of the phonon-scattering mechanisms are provided
in Refs. [19–22].

Now we turn to a brief discussion of the phenomenon that the thermal conduc-
tivities of Xe(He)13 are larger then those of Xe(He)2 in magnitude, assuming that
atomic Xe is an impurity in helium–xenon BNSLs. The following results can be ob-
tained from Eq. 12: τ−1

ma,Xe(He)2
/τ−1

ma,Xe(He)13
=(336.55Cma)/(72.12Cma)=4.67; and

τ−1
st,Xe(He)2

/τ−1
st,Xe(He)13

=(9.15×10−2Cst)/(1.56×10−2Cst)=5.85; and then τ−1
d,Xe(He)2

=τ−1
ma,Xe(He)2

+τ−1
st,Xe(He)2

is larger than τ−1
d,Xe(He)13

= τ−1
ma,Xe(He)13

+τ−1
st,Xe(He)13

, where

τ−1
ma,Xe(He)2

, τ−1
st,Xe(He)2

, τ−1
d,Xe(He)2

are, respectively, the mass-defect scattering rate, the

123



Int J Thermophys (2009) 30:919–933 931

strain-defect scattering rate, and defect scattering rate in the Xe(He)2-type BNSL.
τ−1

ma,Xe(He)2
, τ−1

st,Xe(He)2
, τ−1

d,Xe(He)2
denote the corresponding parameters of the Xe

(He)13-type BNSL. For values of the above parameters, see Sect. 3 and Table 1.
τ−1

d,Xe(He)2
> τ−1

d,Xe(He)13
means τd,Xe(He)2 < τd,Xe(He)13 indicating that the thermal

conductivities of Xe(He)13 are larger then those of Xe(He)2 in magnitude because the
phonon relaxation time in Xe(He)13 is longer than that in Xe(He)2.

As far as the phenomenon that Xe(He)2 is stronger than Xe(He)13 in the anisotropy
of thermal conductivities, it can be explained by the molecular structure of BNSLs
(e.g., the arrangement of atoms in a molecule). Because phonon velocity anisotropy
is related to the crystal (molecular) symmetry most usually defined by the shape of
the unit cell, this indicates stronger anisotropy for crystals with lower symmetry [23].
The Xe(He)2 unit cell consists of a simple hexagonal arrangement of large Xe par-
ticles, with the smaller He particles filling all the interstices between the Xe layers
(honeycomb pattern). Hexagonal symmetry occurs in the unit cell with the form of
a hexagonal prism, where there are six axes of symmetry in one plane, and a further
axis at 90◦ to the other three. So the Xe(He)2-type BNSL has six mirror planes and
one axis of rotational symmetry. However, the Xe(He)13 unit cell consists of a simple
cubic lattice of large Xe spheres with a regular cuboctahedron cluster of 13 He parti-
cles in the body-center of each unit cell. A regular cuboctahedron belongs to the FCC
packing arrangement. The FCC cuboctahedron cluster is demonstrated to possess four
intersecting layers that correspond to the four (111) planes of cubic symmetry. In con-
sequence, the Xe(He)13-type BNSL (cubic containing a FCC cuboctahedron cluster
in each unit cell) possesses full cubic symmetry with nine mirror planes and seven
axes of rotational symmetry. That means that the Xe(He)13-type BNSL is more sym-
metrical than the Xe(He)2-type BNSL. Therefore, Xe(He)2 is stronger than Xe(He)13
in anisotropy of thermal conductivities.

4.2.2 Finite-Size Effects

Calculated data in Table 2 also show that both the magnitude and anisotropy of thermal
conductivities of helium–xenon BNSLs (Xe(He)2 and Xe(He)13) are slightly depen-
dent on the molar volume and atomic number of the simulation system. Thus, the size
dependence of the thermal conductivity possibly results from the finite-size effects in
the small MD simulation. In this study, at room temperature, the phonon mean free
path is in the range 1 nm to 100 nm, which is comparable to the size of BNSLs. In
fact, finite-size effects arise when the simulation domain length is not significantly
longer than the phonon mean free path. The key factors generating size artifacts in
an MD simulation are the frequency cutoff imposed by the simulation domain length
and the correlation artifacts caused by the PBC. The frequency cutoff results in the
following two consequences: (1) the contribution of low-frequency phonons to the
thermal conductivity is excluded; and (2) the static disturbance values are not allowed
at all in the simulation domain. As far as the correlation artifacts caused by the PBC, it
can be explained using an example. For the case of small size systems with the PBC, a
phonon may pass the same point in space several times without scattering. However,
the system may retain some dynamical information during the passage of the phonon,
so artificial correlations may be introduced in the autocorrelation function. A more
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detailed discussion of finite-size effects in MD simulations can be found elsewhere
[10,12].

5 Conclusions

The anisotropic thermal conductivities of helium–xenon BNSLs are calculated via
EMD simulation. Simulation has been carried out on stoichiometric solid structures
(Xe(He)2 and Xe(He)13) with different molar volumes and atomic numbers. Results
show that the thermal conductivities of Xe(He)2 are more strongly anisotropic than
those of Xe(He)13, whereas the average thermal conductivities of Xe(He)2 are about
one tenth (1/10) of those of Xe(He)13, indicating that the thermal conductivities of
helium–xenon BNSLs (Xe(He)2 and Xe(He)13) significantly depend on the molecular
structure in both magnitude and anisotropy. The results also show that both the magni-
tude and anisotropy of the thermal conductivity of helium–xenon BNSLs (Xe(He)2 and
Xe(He)13) depend slightly on the atomic number and molar volume of the simulation
system, with finite-size effects existing in nanoscale systems.
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